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Integration Technique for Singularly  
Perturbed Delay Differential Equations 
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Abstract— In this paper, we have described a numerical integration technique for solving singularly perturbed delay differential equations.  
The second order singularly perturbed boundary value problem is transformed into an asymptotically equivalent first order neutral 
differential equation.  Then numerical integration and linear interpolation is used to get the tri-diagonal system. Discrete invariant imbedding 
algorithm is used to solve this tridiagonal system. The error analysis of the technique is discussed.  To demonstrate the technique and 
affect of the delay argument in the layer, we have implemented the technique on several test examples. 

Index Terms— Singularly perturbed delay differential equation, Boundary layer, Trapezoidal rule, Linear interpolation, Tridiagonal system, 
maximum absolute error. 
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1 INTRODUCTION                                                                     
Any ordinary differential equation, in which the highest 

derivative is multiplied by a small parameter and involving at 
least one delay term is called singularly perturbed delay dif-
ferential equation.  In recent years, there has been a growing 
interest in the numerical treatment of such differential equa-
tions. The boundary value problems of delay differential equa-
tions are ubiquitous in the variational problems in control the-
ory [3].    Lange and Miura [7, 8] gave an asymptotic approach 
for a class of boundary-value problems for linear second-order 
differential-difference equations in which the highest order 
derivative is multiplied by small parameter and shows the 
effect of very small shifts on the solution and pointed out that 
they drastically affect the solution and therefore cannot be 
neglected.  Kadalbajoo and Sharma [6] presented a numerical 
approach to solve singularly perturbed differential-difference 
equation, which contains only negative shift in the differenti-
ated term.  In this method authors present a numerical method 
composed of a standard upwind finite difference scheme on a 
special type of mesh shifts are either ( )εo  or ( )εO .  Pratima 
Rai and Sharma [10] presented a numerical method for singu-
larly perturbed delay differential equation with turning 
points.  Reddy et. al. [11] presented a numerical integration of 
a class of singularly perturbed delay differential equations 
with small shift, where delay is in differentiated term. 

 
In In this paper, we have described a numerical integration 

technique for solving singularly perturbed delay differential 
equations.  The second order singularly perturbed boundary 
value problem is transformed into an asymptotically equiva-
lent first order neutral differential equation.  Then numerical 
integration and linear interpolation is used to get the tri-
diagonal system. Discrete invariant imbedding algorithm is 
used to solve this tri-diagonal system. The error analysis of the 

technique is discussed.  To demonstrate the technique and 
affect of the delay argument in the layer, we have implement-
ed the technique on several test examples. 

2.  DESCRIPTION OF THE METHOD 
Consider a singularly perturbed delay differential equation  

                        )()()()()()( xfxyxbxyxaxy =+−′+′′ δε  (1) 
on  0 < x <1, 0 <δ << 1,    with     

           )()( xxy φ= ,    0≤≤− xδ ,            (2) 
                       y(1)= γ                    (3) 

where a(x), b(x),f(x) are smooth functions , γ  is a constant and 
δ  is the delay.  For the function y(x) be a smooth solution to 
the problem (1), it must satisfy: boundary value problem be 
continuous on [0, 1] and be continuously differentiable on     
(0, 1). 

2.1.  Layer on the left side  
Here, we consider the case ],1,0[,0)( ∈∀>≥ xMxa M being 
positive constant.   In this case the solution of the boundary 
value problem exhibits boundary layer behaviour on the left 
side of the interval [0, 1] i.e., at x = 0. 

In this section we construct a numerical scheme for solving 
the boundary value problem based on numerical integration 
for the case when the solution of the problem exhibits a layer 
on the left side.  

By using Taylor Series expansion in the neighbourhood of 
 the point x , we have 
 

yyxy ′′−′≈−′ εε )(  and yyxy ′′+′≈+′ εε )(   
Therefore,  

                        
2

)()( εε
ε

−′−+′
=′′

xyxyy  

Substituting the above equation in (1), it reduces to an as-
ymptotically equivalent first order neutral differential equa-
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tion 
)()()()()()()( xrxyxqxyxpxyxy ++−′=−′−+′ δεε  (4) 

where axp 2)( −=  ,  bxq 2)( −=  , )(2)( xfxr =  
 

The transition from equation (1) to equation (4) is admitted, 
because of the condition that ε  is small.  This replacement is 
significant from the computational point of view.  Further   
details on the validity of this transition can be found [5, 9]. 

Now divide the interval [0, 1] into N equal subintervals of 
mesh size h =1/N so that == iihxi   , 0, 1, 2, …, N.  
Integrating eq. (4) with respect to x from 1  to +ii xx , we get 
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By using the Trapezoidal rule to evaluate the integral        
approximation, we get 
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(5)                                               
Again by means of Taylor series expansion and linear       

interpolation for )(xy′ , we get  
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Substituting the equations (6) and (7) in Eq. (5), we get 
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Rearrange the above equation into three recurrence rela-
tion, we get 
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The above equation can be written as 

                iiiiiii HyGyFyE =+− +− 11 , 1......3,2,1 −= ni   (8) 

where 
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We solve the tridiagonal system (5) using discrete invariant 
imbedding algorithm.       
 

2.2. Right End boundary Layer 
Now for the right - end boundary layer, integrating Eq. (4) 
with respect to x from ii xx   to1− , we get 
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By Using the Trapizoidal rule to evaluate the integral      

approximation, we get 
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                                                                                                (9) 
Again by means of Taylor series expansion and then corre-

sponding )(xy′  by linear interpolation, we have 
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Substituting the equations (10) and (11) in Eq.(9), we get 
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Rearrange the above equation into three recurrence relation, 
we get 
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3. NUMERICAL EXAMPLES 
To describe the method we consider six test examples with 

left and right end boundary layers.  
 

Example 1. [0,1]    x; 0)()()( ∈=−−′+′′ xyxyxy δε under the 
interval with boundary conditions y(x) = 1, ,0≤≤− xδ y(1) = 1 
The exact solution is given by  

)(
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) )(411(

1 δε
δε

−
−+−−=m  and  
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) )(411(

2 δε
δε

−
−++−=m .                 

Example 2.  0)()(25.0)( =−−′+′′ xyxyxy δε  under the interval 
with boundary conditions y(x) = 1, ,0≤≤− xδ  y(1) = 0                           

 
Example 3.    ; 0)()()( =−−′−′′ xyxyxy δε  under the interval 
with boundary conditions y(x) = 1, ,0≤≤− xδ y(1) = -1     
The exact solution is given by  
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+
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Example 4. 0)()()( =+−′−′′ xyxyxy δε  under the interval with 
boundary conditions y(x) = 1, ,0≤≤− xδ      y(1) = - 1 

4. DISCUSSIONS AND CONCLUSIONS 
In this paper, we have described a numerical integration 

technique for solving singularly perturbed delay differential 
equations.  The second order singularly perturbed boundary 
value problem is transformed into an asymptotically equiva-
lent first order neutral differential equation.  Then numerical 
integration and linear interpolation is used to get the tri-
diagonal system. Discrete invariant imbedding algorithm is 
used to solve this tri-diagonal system. The error analysis of the 
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technique is discussed.  To demonstrate the technique and 
affect of the delay argument in the layer, we have implement-
ed the technique on several test examples and we have shown 
the layer behaviour through graphs. 

 From the numerical examples presented here, we observed 
that as δ  increases, the thickness of the left end boundary 
layer decreases and as δ  increases, the thickness of right end 
boundary layer increases.  As the grid size h decreases, the 
maximum error decreases, which shows the convergence to 
the computed solution. 

 
 
 

TABLE 1.  THE MAXIMUM ABSOLUTE ERRORS FOR 03.0=δ  
_______________________________________________________ 

N/ε            100          200       300         400                500 

________________________________________________ 

Example 1 
12−   1.5805e-003     7.9569e-004     5.3170e-004     3.9924e-004     3.1962e-004             

22−   4.1130e-003    2.0791e-003     1.3911e-003     1.0452e-003     8.3706e-004 

32−   9.1564e-003     4.6690e-003     3.1325e-003     2.3570e-003     1.8894e-003 

42−  1.9899e-002     1.0335e-002     6.9813e-003     5.2710e-003     4.2338e-003 

52−   4.5123e-002    2.4551e-002     1.6873e-002     1.2868e-002     1.0397e-002 

Example 2 

12−   6.5308e-004      3.2800e-004    2.1900e-004     1.6437e-004     1.3156e-004             

22− 1.2766e-003  6.4293e-004   4.2966e-004     3.2264e-004     2.5830e-004 

32−  2.3695e-003      1.1981e-003     8.0175e-004     6.0245e-004     4.8251e-004 

42−   4.2895e-003    2.1844e-003     1.4653e-003     1.1024e-003     8.8353e-004  

52−    8.0121e-003    4.1358e-003     2.7884e-003     2.1028e-003     1.6880e-003 

Example 3 

12−  3.7887e-003     1.9299e-003    1.2948e-003     9.7419e-004     7.8082e-004 

22−  1.5347e-002  7.9592e-003     5.3719e-003     4.0537e-003     3.2550e-003 

32−   3.4927e-002     1.8498e-002    1.2574e-002     9.5224e-003     7.6640e-003 

42−    7.5272e-002     4.3189e-002    3.0328e-002     2.3451e-002     1.9078e-002 

52−    8.0792e-002     1.2306e-001    1.4428e-001    1.5343e-001      1.5555e-001 

Example 4 
 

12−    4.7433e-003     2.3865e-003    1.5943e-003     1.1969e-003     9.5814e-004 

22−   1.0028e-002      5.0628e-003   6.4266e-003     4.8333e-003     2.0371e-003 

32−    1.8863e-002      9.5867e-003   6.2857e-003      4.7533e-003    3.8732e-003 

42−   3.3542e-002      1.7246e-002   1.1608e-002     8.7488e-003     7.0204e-003 

52−    5.6064e-002     2.9375e-002   1.9905e-002     1.5053e-002      1.2103e-002 
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        Fig.1.The numerical solution of example 1 with 1.0=ε  
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          Fig.2.The numerical solution of example 2 with 01.0=ε  
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        Fig 4.The numerical solution of example 4 with 01.0=ε  
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